Fusion of Multi-Atlas Segmentations with Spatial Distribution Modeling
نویسندگان
چکیده
In recent years, multi-atlas fusion methods have gained significant attention in medical image segmentation. In this paper, we propose a general Markov Random Field (MRF) based framework that can perform edge-preserving smoothing of the labels at the time of fusing the labels itself. More specifically, we formulate the label fusion problem with MRF-based neighborhood priors, as an energy minimization problem containing a unary data term and a pairwise smoothness term. We present how the existing fusion methods like majority voting, global weighted voting and local weighted voting methods can be reframed to profit from the proposed framework, for generating more accurate segmentations as well as more contiguous segmentations by getting rid of holes and islands. The proposed framework is evaluated for segmenting lymph nodes in 3D head and neck CT images. A comparison of various fusion algorithms is also presented.
منابع مشابه
Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation
In multi-atlas based segmentation, a target image is segmented by registering multiple atlas images to this target image and propagating the corresponding atlas segmentations. These propagated segmentations are then combined into a single segmentation in a process called label fusion. Multi-atlas based segmentation is a segmentation method that allows fully automatic segmentation of image popul...
متن کاملImproving whole-brain segmentations through incorporating regional image intensity statistics
Multi-atlas segmentation methods are among the most accurate approaches for the automatic labeling of magnetic resonance (MR) brain images. The individual segmentations obtained through multi-atlas propagation can be combined using an unweighted or locally weighted fusion strategy. Label overlaps can be further improved by refining the label sets based on the image intensities using the Expecta...
متن کاملEstimation of Registration Accuracy Applied to Multi-Atlas Segmentation
Multi-atlas registration-based segmentation has recently become a popular technique in medical imaging. Since the quality of individual atlas segmentations affect the quality of the results, atlas selection and atlas fusion have become important areas of research for multi-atlas segmentation. In this paper, we present an automatic technique that approximately calculates the quality of registrat...
متن کاملAutomatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopt...
متن کاملA learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation
We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011